TVec2


This object has been removed in release 10.0.0. Use NTL objects instead.

Template class for working with 2D vectors.

Besides operators defined in the template and standalone ones described below the template description there are several additional useful operators for working with vectors and matrices togather. You can find them at TMat2 matrix template description page.

You can find more information in comments below.

template<class TYPE> union TVec2
    {
        struct
        {
            TYPE X;
            TYPE Y;
        };
        TYPE Data[2];
    
        TVec2() = default;
        TVec2(const TVec2 &other) = default;
        TVec2(TVec2 &&other) = default;
    
        TVec2(const TYPE x, const TYPE y); // Create with specified values 
        TVec2(const TVec3<TYPE> &v); // Create from 3D vector 
        TVec2(const TVec4<TYPE> &v); // Create from 4D vector 
    
        const TYPE &operator[](const size_t index) const; // Return component value constant reference by index 
        TYPE &operator[](const size_t index); // Return component value reference by index 
        bool operator==(const TVec2 &other) const; // Strict comparison with other vector for equality 
        bool operator!=(const TVec2 &other) const; // Strict comparison with other vector for inequality 
    
        TVec2 &operator=(const TVec2 &other) = default;
        TVec2 &operator=(TVec2 &&other) = default;
    
        operator TVec3<TYPE>() const; // Convert to 3D vector 
        operator TVec4<TYPE>() const; // Convert to 4D vector(quaternion) 
    
        TVec2 operator+(const TYPE value) const; // Add scalar value to each component and return new vector 
        TVec2 operator-(const TYPE value) const; // Subtract scalar value from each component and return new vector 
        TVec2 operator*(const TYPE value) const; // Multiply each component by scalar value and return new vector 
        TVec2 operator/(const TYPE value) const; // Divide each component by scalar value and return new vector 
        TVec2 &operator+=(const TYPE value); // Add scalar value to each component of this vector 
        TVec2 &operator-=(const TYPE value); // Subtract scalar value from each component of this vector 
        TVec2 &operator*=(const TYPE value); // Multiply each component of this vector by scalar value 
        TVec2 &operator/=(const TYPE value); // Divide each component of this vector by scalar value 
    
        TVec2 operator+(const TVec2 &other) const; // Add each components of this and another vectors and return new vector 
        TVec2 operator-(const TVec2 &other) const; // Subtract each components of this and another vectors and return new vector 
        TVec2 operator*(const TVec2 &other) const; // Multiply each components of this and another vectors and return new vector 
        TVec2 operator/(const TVec2 &other) const; // Divide each components of this and another vectors and return new vector 
        TVec2 &operator+=(const TVec2 &other); // Add each components of another vector to corresponding component of this one 
        TVec2 &operator-=(const TVec2 &other); // Subtract each components of another vector from corresponding component of this one 
        TVec2 &operator*=(const TVec2 &other); // Multiply each components of another vector to corresponding component of this one 
        TVec2 &operator/=(const TVec2 &other); // Divide each components of this vector by corresponding component of another one 
    
        const TYPE *data() const; // Return pointer to components array 
        bool is_equal(const TVec2 &other, const TYPE tolerance) const; // Soft comparison for equality with another vector with specified tolerance 
        bool is_not_equal(const TVec2 &other, const TYPE tolerance) const; // Soft comparison for inequality with another vector with specified tolerance 
        TYPE norm() const; // Return norm/length 
        TYPE norm2() const; // Return squared norm/length 
        TYPE distance(const TVec2 &other) cons;t // Return distance to point 
        TYPE distance2(const TVec2 &other) const; // Return squared distance to point 
        TYPE dot(const TVec2 &other) const; // Return dot product 
        void normalize(); // Normalize(make nor/length equal to 1) this vector 
        TVec2 normalized() const; // Return normalized equivalent of this vector 
    };

Additionally following operators exists and can be used for arithmetic operations with scalar value and 2D vectors. So as a final result you may use the 2D vector template with scalar values in both directions(scalar * vector and vector * scalar). Pay attention on the - and / operators. The result of operation like scalar - vector will be different from the result of operation like vector - scalar. For example, 5 - { 1, 2 } will give you vector { 4, 3 }(which is { 5 - 1, 5 - 2 }) and { 1, 2 } - 5 will give you vector { -4, -3 }(which is { 1 - 5, 2 - 5 }).

template<class TYPE> TVec2<TYPE> operator+(const TYPE value, const TVec2<TYPE> &v);
    template<class TYPE> TVec2<TYPE> operator-(const TYPE value, const TVec2<TYPE> &v);
    template<class TYPE> TVec2<TYPE> operator*(const TYPE value, const TVec2<TYPE> &v);
    template<class TYPE> TVec2<TYPE> operator/(const TYPE value, const TVec2<TYPE> &v);
Namespace: nitisa::math
Include: Nitisa/Modules/Math/Vector.h